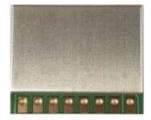


Documentary


MDR Series(Mini_A, Micro_A) Arduino Example Manual

[MDR_Mini_A]

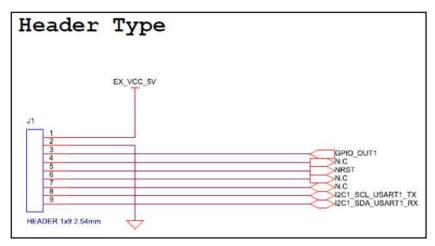
[MDR_Micro_A]

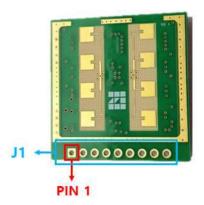
Rev.003 1 / 9

[목차]

1.	MDR Series 동작 원리	3
2.	Arduino와 Radar 모듈의 Pin 연결 ·······	4
	2.1 MDR_Mini_A Pin	4
	2.2 Arduino Uno와 MDR_Mini_A의 Pin 연결 ······	4
	2.3 MDR_Micro_A Pin ·····	5
	2.4 Arduino Uno와 MDR_Micro_A의 Pin 연결 ······	5
	2.5 MDR, Arduino Uno 연결 참조 ······	6
3.	Arduino Example 수행 방법 ······	7
	3.1 소스코드 업로드	
	3.2 시리얼 모니터 활성화	7
	3.3 CLI Command 입력	7
	3.4 CLI Command 입력에 대한 수신 데이터 확인	8
	3.5 주요 CLI Command	8
	3.6 MotionData 표현식	q

1. MDR Series 동작 원리

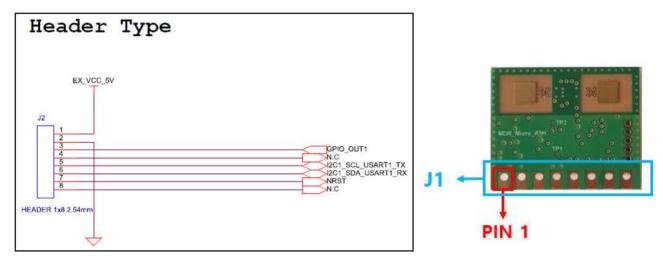

- MDR은 Motion Detect Radar을 의미함
- MDR은 전방의 움직임을 감지하여 기본적으로 움직임이 있을 시 High, 없을 시 Low 신호가 3번 Pin에서 출력됨
- Detect Value는 MDR에서 측정된 전방의 움직임에 대한 수치를 나타냄 => 수치가 클수록 큰 움직임이거나 움직이는 물체가 가까이 있는 것을 의미함
- Detect Level은 High 신호를 주는 기준인 Detect Value의 Threshold 값을 나타냄
- MotionData는 Detect Value, 속도(Ver 2.0만 해당), GPIO_OUT1 상태를 통합한 용어임
- Detect Value가 설정된 Detect Level보다 높아지면 3번 Pin 출력이 High로 동작함
- Hold Time은 전방에 움직임이 있을 경우, High 신호의 지속시간(ms)을 나타냄
- Uart 통신을 통해 실시간으로 현재 측정되는 MotionData를 알 수 있음
- Uart 통신을 통해 Detect Level과 Hold Time은 가변 가능함


Rev.003 3 / 9

2. Arduino와 Radar 모듈의 Pin 연결

2.1 MDR_Mini_A Pin

PIN	이름	설명
1	VCC_5V	전원 +
2	GND	전원 -
3	GPIO_OUT1	움직임 감지 상태 출력
4	N.C.	사용 안함
5	NRST	Reset(Active Low)
6	N.C.	사용 안함
7	N.C.	사용 안함
8	I2C1_SCL_UART1_TX	UART 데이터 송신(TTL 레벨 : $3.3V$)
9	I2C1_SDA_UART1_RX	UART 데이터 수신(TTL 레벨 : $3.3V$)


2.2 Arduino Uno와 MDR_Mini_A의 Pin 연결

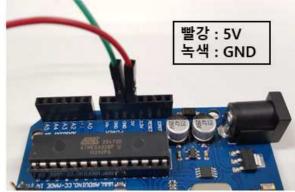
PIN 정보	Arduino Uno	MDR_Mini_A
VCC_5V	5V	1번
GND	GND	2번
GPIO_OUT1	7번	3번
I2C1_SCL_UART1_TX	8번(Rx)	8번(Tx)
I2C1_SDA_UART1_RX	9번(Tx)	9번(Rx)

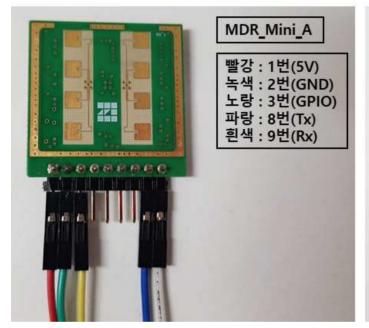
Rev.003 4 / 9

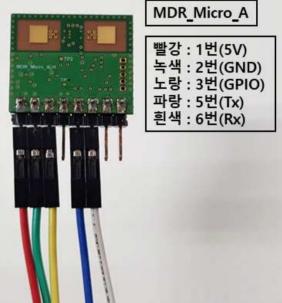
2.3 MDR_Micro_A Pin

PIN	이름	설명
1	VCC_5V	전원 +
2	GND	전원 -
3	GPIO_OUT1	움직임 감지 상태 출력
4	N.C.	사용 안함
5	I2C1_SCL_UART1_TX	UART 데이터 송신(TTL 레벨 : $3.3V$)
6	I2C1_SDA_UART1_RX	UART 데이터 수신(TTL 레벨 : $3.3V$)
7	NRST	Reset(Active Low)
8	N.C.	사용 안함

2.4 Arduino Uno와 MDR_Micro_A의 Pin 연결

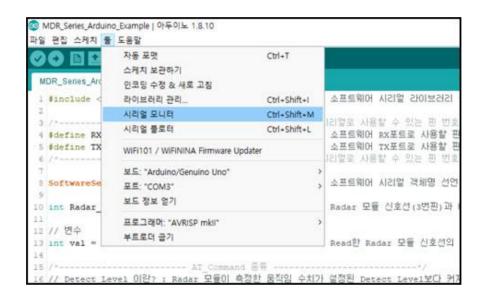

PIN 정보	Arduino Uno	MDR_Micro_A
VCC_5V	5V	1번
GND	GND	2번
GPIO_OUT1	7번	3번
I2C1_SCL_UART1_TX	8번(Rx)	5번(Tx)
I2C1_SDA_UART1_RX	9번(Tx)	6번(Rx)


Rev.003 5 / 9



2.5 MDR, Arduino Uno 연결 참조

Rev.003 6 / 9


3. Arduino Example 수행 방법

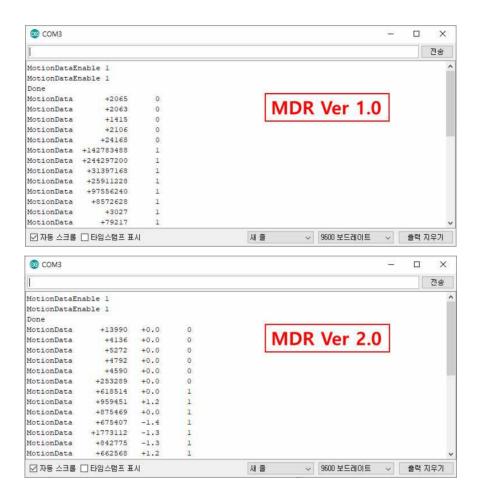
3.1 소스코드 업로드

- Arduino와 MDR을 Pin 번호에 맞게 연결 후, Arduino Example 소스코드를 Arduino Uno 에 업로드

3.2 시리얼 모니터 활성화

- 아래의 그림을 참고하여 시리얼 모니터 켜기

3.3 CLI Commnand 입력


- 시리얼 모니터에 아래의 그림을 참고하여 CLI Command를 입력하고 전송 버튼을 누름

Rev.003 7 / 9

- 3.4 CLI Command 입력에 대한 수신 데이터 확인
 - CLI Command를 송신하면 그에 따른 수신 데이터를 확인함
 - "MotionDataEnable 1"을 전송하면 MDR이 측정하고 있는 MotionData를 주기적으로 출력
 - MDR Ver 2.0은 속도와 방향성 정보까지 출력됨
 - 주요 CLI Command는 3.5를 참조
 - 자세한 MotionData의 표현식은 3.6을 참조

3.5 주요 CLI Command

CLI Command	설명
MotionDataEnable 0	MDR이 측정하고 있는 MotionData를 주기적으로 출력
MotionDataEnable 1	MDR이 측정하고 있는 MotionData를 주기적으로 출력
DetectLevel	현재 설정되어 있는 DetectLevel 확인
DetectLevel 11000	DetectLevel [11000] 설정
HoldTime	현재 설정되어 있는 HoldTime 확인
HoldTime 2000	HoldTime [2000ms] 설정

Rev.003 8 / 9

3.6 MotionData 표현식

- "MotionDataEnable 1" 커맨드로 실시간 MotionData를 UART로 확인 가능하며, 움직임이 없을 시, 속도는 0으로 출력됨
- "MotionDataEnable 2" 커맨드는 움직임이 있을 시에만 MotionData를 UART로 출력함
- 아래의 글에서 'Space'(0x20)는 '□'로 표현
- MotionData 표현식: "MotionData u + DetectValue u ±속도 u GPIO State(0 or 1)"
- MotionData의 printf 포맷은 아래와 같음(자리수를 채우기 위한 공백은 '@'으로 표현)

"MotionData 4 %+11d 4 %+6.1f 4 %6u\u224n", (int32_t)DetectValue, (float)Speed, (uint32_t)GPIO_State

- 예시 1) MotionData u +1234567890 u @@-5.5 u @@@@@1<LF>
- 예시 2) MotionData u @@@@@+36516 u @@+5.5 u @@@@@01<LF>
- 예시 3) MotionData u @@@@@@+8848 u @@+0.0 u @@@@@0<LF>
 - DetectValue는 항상 양수로 출력되며, 부호를 포함하여 11자리수를 지킴
 - 속도는 실수형이고, 앞에 '+' 또는 '-' 문자가 포함됨(속도 방향 : 가까워짐 / 멀어짐 +)
 - 속도는 부호와 '.'을 포함하여 6자리수를 지키며, 단위는 km/h 임
 - GPIO State는 0 또는 1로 표현되며 6자리수를 지킴

Rev.003 9 / 9